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N. I. Shbeeb, W. K. Binienda and K. L. Kreider
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Abstract

A general methodology was constructed to develop the fundamental solution for a

crack embedded in an infinite non-homogeneous material in which the shear modulus

varies exponentially with the y coordinate (thickness). The fundamental solution was

used to generate a solution to fully interactive multiple crack problems for stress intensity

factors and strain energy release rates. Parametric studies were conducted for two crack

configurations. The model displayed sensitivity to crack distance, relative angular

orientation, and to the coefficient of nonhomogeneity.

Introduction

One of the disadvantages of composites is the mismatch of the thermal expansion

coefficients between its constituents. This mismatch produces residual stresses, which

may initiate debonding, delamination, and micro-cracks. For example, application of

ceramics as a thermal coating for a metal substrate often produce debonding at the

interface after a small number of thermo-mechanical load cycles. In order to minimize the

mismatch between the ceramics and metal a new technology was developed. This

technology allows fully tailored processing of materials and interfacial zones with

predetermined continuously varying mechanical properties, that are known as

Functionally Graded Materials (FGM) (see Asish et. al., 1997 and Holt et. al., 1993).
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FGM could be described, as two-phase particulate composites wherein the volume

fraction of its constituents differs continuously in the thickness direction (see Niino and

Maeda, 1990; Hirano and Yamada, 1988; Hirano et. al., 1988; and Kawasaki and

Watanabe R., 1990). This implies that the composition profile could be tailored to give

the appropriate thermomechanical properties. Their physical properties can be determined

either experimentally or using higher order theory for FGMs developed by Aboudi,

Pindera and Arnold (1997).

Delale and Erdogan (1983) solved the crack problem for a nonhomogeneous plane.

The authors considered the plane elasticity problem, in which the material is isotropic,

has a constant Poisson's ratio (v), and the Young's modulus (E) is of an exponential form

varying in the x-direction, namely,

E( x) = Eoe t_' (1)

where [3 is a non-homogeneity constant and E0 the Young modulus of the homogeneous

material. They found that Poisson's ratio did not have much effect on the resulting stress

intensity factors. And that the strain-energy release rate at the crack embedded in the

portion of the medium with higher stiffness is lower than that corresponding to the crack

tip in the less stiff side of the material. Hence, the crack will grow in the direction of the

less stiff material.

Also, Delale and Erdogan (1988) solved the collinear crack problem for two

dissimilar homogeneous elastic half-planes bonded to a very thin nonhomogeneous layer.

The elastic properties of the interfacial material varied continuously between those of the

two semi-infinite planes. The Airy stress function was used in their formulation of the

solution in which it was assumed that it is composed of two functions, one is associated
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with an infinite plane containing the crack on the x-axis, while the second is an uncracked

strip. Their results showed that if the crack location approaches the less stiff material, the

strain energy release rate increases.

It can be noticed that multiple oriented crack problems embedded in a non-

homogeneous infinite plate have not yet been addressed. Thus the scope of this work will

deal with the general solution to a single and multiple oriented cracks embedded in a

nonhomogeneous infinite plate. It is assumed that the FGM has a constant Poisson's ratio

and the shear modulus is of an exponential form. The solution is valid for both plane

stress and plane strain.

General Problem Formulation

The solution of the mixed boundary value problems for stress intensity factors or

strain energy release rates at a crack tip is obtained from the perturbation part of the

problem, see Figure 1. Before any particular problem is addressed, the general strategy

of solution is discussed in this section.

Assume that there are two states of stresses, one is associated with a local coordinate

system (x_-y_) in an infinite plate, while the other is associated with boundaries of a finite

plate defined in a structural coordinate system (x-y). The crack lies on the x_-axis, which

is at an angle 0 from the x-axis. In the case of infinite plate problems only the first state

of stress exists, but for the general problem the total stresses in the local coordinate

system are expressed as:

°'r (xl, Yl) = O'11_(x,, y,) + o "_2_(x 1, yl)
"1 '_l '* I "l [ )IYl (2)

__ll _x, yj) + r 12_(x I Yl)z i, = , ,
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where,

o"_2) (x,, y_) = sin2(0)a (x, y) + cos2(0)rr,, (x, y) - 2sin(O)cos(O)r,,(x, y)
)t _i ..

r _2' (x_, y,) = -sin(0)cos(0)rr (x, v) + sin(0)cos(0)o-(x, y)
_1 VI - - "

+ (cos2(0) - sin2 (0))r,.,,(x, y)

x = x)cos(0) - 3,, sin(0)

y = x) sin(0) + y) cos(0)

The stress boundary conditions obtained from the perturbation problem are:

- p,(x_) = lim o'r,, (X_, y,)
v I --)0 - ' (3)

- P2(X,) = lim r_,, (XI, Yl)
) t ..., 0 •

where Pl(Xl) and p2(xl) are the normal and shear tractions of the inner crack surfaces.

Upon substitution of (2) into (3) the boundary conditions becomes:

pt(xl) limo "(j'(x I yj)+lim-<2i(xl,yt) (4)

• (2}-p2(xl)= lim-II)(x t Yl) + hmr,, (xl,y_) (5)
._1_ 0 '_'ltl'll _' VI_==)¿} " I I

It is noticed that the principal part will be produced from the first part of (4) and (5). The

most general form of the stresses are expressed as:

l h
o,,,, (x,, y, ) = K_'(x,, y),t)fj(t)dt

-(" (x_, 3', ) = (x,, v_, t)f j (t)dt
t_,,, 2_ J'" 2j .

(6)

a (2>(x_,yj)= 1 iy(2)(xl, Yl,t)f j(t)dt
_t)1 -_ *_l.j

a

1 t {2>

_"(-_) (xl ' Yl ) = -- ] K-_J'_ 2/r i, (xl"yl't)fj(t)dt for a<(xl,t)<b

NASA/CR-- 1999-208676 4



where fj are so called auxiliary functions defined as derivatives with respect to x, of

displacement jumps along the crack. The kernels are expressed as:

K(')" " JX (I)/,/,..g x .czi(h-t) _1_

K'2'(x, y,,t)= _X_i_-'(a,x,cos0-.,!/ , v sinO)e _"''Sm°+'' .....°-'_da

(7)

The expressions of X!. 1) and X! 2) depend on the stress and displacement continuity
q U

of the problem. If X!! ) do not vanish as _i approaches infinity then an asymptotic
lJ

analysis is done to separate the singular part from the regular. Consequently equation (7)

can be integrated numerically.

As _i] approaches infinity equation (7) becomes:

K"'(_,,,j .',',,t)= jX;,,(a)_-b_l,,*..,, "do_
(8)

Substituting equation (8) into (6), the following is obtained:

h

1 fx_(')(a)e-b'_b"+"_("'-')daf f (t)dt
v,.h j a ).

v(,)(x,,y])= 1 i (,) -I,_l,,+i-(,,-,, 'i.,,,, _ X2i (a)e da f,(t)dt

(9)

h

a _2' (x,,y,)= 1 f..,2,.. -I,_1_.,,_,,o+,,_.o_o)+_( . . dotff/(t)dt,,,, _ j.._,/tooe .... co_o-,.,_i,o-,,

(2) ,, ' i (2) -,og[(,lsinO+,co_O)+ifZ(,l¢O_O-,lsinO-l) 'i

r,,,_ t%, yl)=-f-_ X__j (o_)e ' do_ f i(t)dt

(10)
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Further simplifications can be achieved by taking the limit of equation (9) so that the

first terms in equations (4) and (5) can be determined:

lim[_l i X_'_(a)e-I<
>,-,0 27/"-_

h

,.,+i,_,.,,-, 'da; f j (t)dt]
o

(11)

Assume that X _ have the following asymptotes:
q

asvl = c ") + idi_}I ...... a _ +oo. ij

as),2 CIj¿ ) ._ (1) ..= -- iaq .... a "--') --oo

(12)

Splitting equation (12) at o.=0 into two parts and making the change of variable for

the part from _oo to 0 by letting ct=-_, adding and subtracting (12) from (11) and taking

the limit as y_---_ 0, the following is obtained:

1 ff IX"' X"' 2c_}_]cos(a(t-x,))+2.7" {_ iJ (a)+ o,.(a')-

[ X i,/l } .... (l) i ,,t.. lim[l.__l_slP,,,]
(o0 - a 0 (a) + 2 d,j ]t sln(_z(t - x, ))}da + ,,-,, 2re

(13)

where, II)X0, Ca)is the complex conjugate of XII_(oO and the term denoted by SIP m is:

SIP'_' = i 2e-re' {c!",, cos(o_(t - x, )) + d,lj" sin(a(t - x, ))}da
0

(14)

The following integral identities can be used to evaluate equation (14) (Abramowitz

and Stegun, 1964):

i e °'' cos(maMa - , n
r/ +m 2

0

i e -_' sin(moOda - m
!l 2 + Ill 2

0

(15)

Hence, it can be shown that (14) becomes,

._1, , Ill(/ __ Xt )!j 3_ + 2 d!j
)2 _ )2 ,(t - x_ + y( (t - x, + y_-

(16)
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where upon taking the limit of (16) and substituting the result into (13) the following

expression is obtained:

{-[X/l_i;+ X i,l'l _ 2c_,>]cos(a(ti; - x,)) +

_ + 2id_)']i sin(o_(t - x,))}da +Ix//' -
7r t-%

(17)

In some problems the integrand Xi)>(R)does not converge rapidly to zero,

(I)

consequently U (where X!i is close to zero) is large, thus for computational efficiency an

additional term of the asymptote is taken which is of the order (_-_), namely:

'" gli"
asyll= e,j +i ....... o_+oo (18)

R R

Equation (17) remains the same if the asymptote (18) is subtracted and added at the same

time. It becomes:

e_l)

1 ,,too tc!j +'_J )]cos(R(t-x,))+2a'_{[X_))(R)+X"_" "-2" _''

iI_ _Xll_ .... _1_ gl I>
[Xij < (R) !j (R)+21(ai) + _''_ )]isin(R(t-%))}do_+

R

" _'_ ))dR
" f"COS(R(t--x,))dR __rciZgu sin(R( t-x,R R

1 d_ '_

lr I--X I

(19)

To evaluate the last two terms of equation (19) the following identities are used

(Abramowitz and Stegun, 1964):

i l sin(R(t -

i l cos(a(t -

x, ))dR -
Jr (t-x,)

x_ ))dR = -Ci(U(t - x, ))

= -(C O + logU(t - %) +

lU(t- h )]

I
0

(20)
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where, Co is the Euler constant. The following expression replaces equation (19),

1 {[ o, ( )- iJ (u). ,+_'0 )]isin(a(t-x,))lda2tc_ Xl,la X,,, _...2i(dil, gl"
a

U

+ --_'2tr {[X'_j'' (a) + X 0,_'' (u)'" - 2c _''ij]cos(a(t - x, ))}da

(t)

1 _I{[Xo (al+X_l'(a)-"" '"+e') )]cos(a(t-x,l)}da+ _ iI)
-- /.£Cij
2_ a

(I) e(i)1 d_/' giJ (t-x I) !i
+ Ci(U(t - x_ ))

tc t- xj 2 t- x_ Jr

(21)

The first part of (4) and (5) can be expressed as:

_l_ - . ti=_ lim o"_1_(xl, ?,l)' = _1 lj Jj(t)dt + __1 ..t'_(x_,t)fj(t)dt_i
,,_o ',', Jr,, t- x I 2_r ,,

__t, (t - x_) ejj Ci(U(t - x,))]fi(t)dt
+ ,, [ t -- x_ 7C

(22)

lim r_'_, (x,. Yz ) 1 i .t,', _" . 1 'i k '_'= _ -2jJj(t)dt +--.i 2i (xj,t)f,(t)dt
,,-_o lr , t- x I 2re,,

i (1) (1)g2j (t - x,) e2J Ci(U(t - xj))]f j(t)dt
+[2,, 7r

where,

(23)

k_"" _ [X"'(a)- _"(a)+ztta,j +g_)]tsm(a(t-x,))}da
0C

'_' X 'u" 2cls"]cos(a(t ))}daI[x,'/'(a)+ .ta)- -x,
(1)

X (1)+ _1 [ ,j (a) + X,j,(1 t'a') - 2"tc,__' + e_)lcos(a(t - x, )) Ida
a

(24)

A similar procedure is applied procedure to the second terms in equations (4) and

(5), expressed in the form shown in (10). The terms denoted by X!2_(a)have the
q

following asymptotes:

(2_ • _. ,2) + idi_2_...... a --->+ooasy3 = (a o + tbii-_)a + c o

asy4 " _2_ .._2))0 _+ c(2_ .._2_= _--(.l(j dr" IDij iJ -- la!j ...... a ----) --oo
(25)
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Simplifications can be made with the use of the integral identities (Abramowitz and

Stegun, 1964):

i ae -_' cos(m_)do_ - n2 -- m2)2
0 (712 + tIl2

i c_e-_°' sin(moOdo_ - 2ran
(n 2 + m 2)2

{I

(26)

Hence, the second part of equations (4) and (5) becomes:

lim 0"t2_( 1 i[al2/)(x_ sin20 -cos20(t- x,) 2)
(xc sin2 0 + co_-O(t_ x,)-) 2

o

zo, j x, (t - x t ) sin 0 cos 0
+

(x_ sin-' 0 + cos 20(t - x I)2)2

+ c,,'2'x, sin0 + 2d;;' cos0(t__x,
(x? sin 2 0 + _ _---x,?) 2 )]f,(t)dt

1 _ik _2_
+ --j.._j (&,t)fi(t)dt2re

o

(27)

(2)(Xl, _1) 1 a_}tx,-sm-O-c s20(t--x,) 2)lim r,,,. = -- :'-- .....
,_-_0 • " Jr _ sin20 + _o_-O(t- x, )2)2

2b2 j x_( t - x_ ) sin 0 cosO
+

, )2)2(Xj- sin 2 0 + cos 20(t - x 1

c i2_ " sin 0 + 2dl_2' cos O(t - x, )
2, .t, -i _ ]f j(t)dt+ (x_ sin20 + cos 2 O-U--x, 72 -

b

1 I 12_ x+-- k_j( ,,t)fi(t)dt
2tr -

a

(28)

where,

k_21(xl,t)=f l[Xi,_l _2_ o_ + • _2_ _i.o,_ o, (cz)-X!j ( ) 2t(czb!_ +d_'!)e -_'' ]isin(o_(t-x_))}do_q

+_o{[Xo (a) o, (a)- t *,:, +% )e ]cos(a(t-x,))}da

(29)

It should be noted that (27) and (28) do not contain any singularity and the

asymptotic expansion is applied only for computational efficiency.
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Fundamental Solution

The formulated equations in the previous section will be used to solve the problem of

radial multiple cracks in an infinite isotropic FGM as depicted in Figure 2. Since dealing

with an infinite plate only equations (22), (23) and (24) will be used. But before doing so,

the fundamental solution of a single crack is required. Konda and Erdogan (1994) solved

the single crack problem using Navier equations. In this work the same problem will be

solved using Airy stress function and the shear modulus g will vary exponentially with

the global y-axis.

The shear modulus is defined as follows:

P2(Y) = Po er'

P__(xl, Yl) = Po eÈ_'+_'

8 = )'cos(0)

/3 = $ sin(0)

(30)

where qt, 5, and [3 are real constants and represent the coefficients of

nonhomogeneity.

The Airy stress function U(xj,y_) are defined as,

02U
o" (x t, Yt) -

2o_._

02U

_,,,, (x,, y,) =

32U
r,,_ (x I , Yl ) -

3 xl3 Yl

(31)

The stresses and strains are related through:

v ) - Ou, _ 1
£h'-] (xl' - 1

O_Xl 8]_/(Xl ' Yl)

o3v I l
e,,,, (x t, Yl ) -

°_ 3'1 8//(x_, Yl )

l (a,,, s,,,__
Stl,, (flt'l._ Yl) -_" "2 3 Yl @ 3X I

[(_+1)_, +(,_-3)_,,,,]

[(_-3_,,.,,+(_+l_, ]
1

_"AI VI

21.1(xl, Yl)

(32)
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where K is defined as,

/¢ = 3 - 4v ...... for plane strain

3-V
/¢ - for plane stress

l+v

(33)

and the compatibility equation is defined as:

" O 28,,,, a 28O-e,,,, + ' 2 ""

0_ X / a Yl a Xla Yl

-0 (34)

From the compatibility equation the following fourth order governing equation for

U(xl,yj) is obtained,

8
V4U(x,, y, ) - 26-7-- (V 2U (x,

ay,

8/35 8 :U (x,, y, ) +/3 _-(r - 3 82u (x,,_ y, )
l+_c 8 x, c) 3,_ l+t¢ 3y,-

6"( 82U(xl' yl)-. -_ _c-382U(x"3q)) =0
a.v? l+ ,c a x?

, Y, )) - 2/3 _ (V 2U(xl,. Y, ))+

__82U( x,, _ ))+
(35)

where

ax? ay?
(36)

Defining the Fourier transform as follows,

i _icz hV(O_, yl) = U(xl, y_)e dx I

and applying equation (37) to (35), the following characteristic equation is obtained,

n -- 25113 + --=--------K2 +1 + 6- - 2a(i/3 + a) 12 + a6[ i + 2a 1

+o_ 2 a 2 + _+/3(2ia-/3) =0
K 2 +l

(37)

(38)
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the roots of which are:

'/ I'lln_ =_ 5+/3_)- 6+ +4(a'-+ia fl-Vt¢+l VK+I

n2 = 6- vtc+lj -2 6- vi¢+1)+4(otZ+ia fl+ vt¢+l)

1[( /3" 3_/+ 11( /_" 3_/2 / 6" 3_/n4 =2,6- _-_T+Ij 7 5- vt¢+l ) +4(°_2+i°_ ]7+ Vw+l )

The solution to the ODE becomes:

(39)

so that,

V(o_, yl ) = B_ (a)e'"" + B 2 (t_)e ''-'_''+ B 3(00e ''_'' + B 4 (Oqe ''_.'' (40)

U(x,,y,)=-_- [Bj(or)e'"" +B2(a)e"-" +B3(_z)e ''°' +B4(a)e",',]e",'_da (41)

Bounded form of equation (41) can be obtained upon examination of the roots of the

characteristic equations. The real part of nl and n2 are negative while that of n3 and n4 are

positive as o_approaches infinity. Hence U2 is defined for positive and negative y_ as,

1iU2(x_, Yt) = _ (B_e'"" + B2e "->l)ei''_'da; ......... y_ > 0

(42)'iU2(x_, .v_) = _ (B3e '_'' + B4e ''_'' )e_Wda; ......... y_ < 0

Normal and shear stresses must be continuos at y_=0. The continuity conditions can

be represented by equation (31 ) as:

OU(x,,O+) _ 3U(x_,O-)

o3Y_ o3Yl (43)

U(x_,O +) = U(x,,O-)
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where, 0 + is for y_>0 and 0- is for y_<0. Using conditions (43) we can eliminate B3

and B4 "

?lt -- IZ_,
B_ = n4 -n_ Bj +------_B_

1l 4 --123 n._ --II 3

B4 _= n_ -n 3 BI-t " " B,
r,14 -- 113 114 -- 713

(44)

The remaining two unknowns can be expressed in terms of the auxiliary functions:

c_
.f,(x_) -

Ox_

f2 (xl) -
c? x_

- __[u_(x_,O _-) - ul(x_,O )1

- _ Iv, (x1,0 +) - vl (x_ ,0- )1

The final expressions of the stresses are obtained using (31) and Hooke's law,

1 j[,_ F,(mh_- F2(mh,, e'""
O" ,. (x_, Yt) = _ -_ thth22 Ih2hzl

+ n_ - Fl(o()h21 + F_-(°t)hll e''__' ]e'"'_d°t
- hllh22 - th2h21

(45)

(46)

i F 1(o0h., - F_ (a)h,. e"'"'1 cF-[ .....
21r _= hllh22 - Ih2h___

- Fl(oOh21 + Fz(o_)hjl e,,:,] ]e,.,,,_d_

h 11t122 -- 1112]121

(47)

+ i
r,,,, (x,, y_ ) 2n:

+tl 2

I oe[n_ F,(ot,)h22 - F:(oc)h,2 e,,,>,
__ hl_h_-2 t112t12l

Fl(oO/121 + F2(Ot,)lhl e,,_,_ld,,'_do_

hi i h22 - h__ll___

(48)
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where,

_+1
h,_ - (n, - n3 )(n, - n4 )

8/1o

t¢+l

11,2 - (n 2 -n3)(n 2 -n 4)
8/./o

(n, - n_)(n, - 114) ]h2,

tl. ia-fl (a2(l+ic)-a2( (n2-n3)(n2-n4)

__ - 8,u0 1('_,- 3))[(a _-_n, .. __.,)_--_1_ )_ ----n4) ]

I,

I (13-ia _tF/(ot) = f /(t)e dt ...... j = 1,2.
a

(49)

The singular integral equations can be solved for the auxiliary functions using the

boundary conditions:

- p_(x_) = ,,lim-_oa""(xl'Y 1) ...... a < x_ < b

-p2(x_)= limr (xt,y_) ...... a< x_ <b
"_1--+0 II _1

(50)

Equation (47) and (48) are rearranged as follows,

i h_e,,j_ t _ ]l_je"'-._,+ 1 a2[ "- - F,(a)
a,,,,(x), 3'_ ) - 2n" -= hllh22 hl2h21

,,,,, h:_e,,, ,, (51)hire -- _
+ F2(a)]e<"da

hl lt122 - h,2h2j

i _ nih,,e"'"" -- n_h_ie ''e_j
r,,,, (x,, y,+) - 2St J a[ .... F, (a)

. . -= hllh22 h12h21

n_hlle - _ nlh12e F_(oO]ei,,,,da
.Jr_ -

hjlh2: - hl2h21

As (_ goes to infinity nt---n2 so Xij can be expressed as defined in equation (9):

11_ -- h21

Xii = -Ot2[hlt_/2 hp_h21 ]

:_.r nlh22 - n2h21

X e, = -lCq hjlh---7 h12h2/]

Xp =-o_2[ .. _!-hP-
- hi lh,_ htTh2_ ]

X,, = -ia[. n_h,, - nll1_2 ]

-- h,_h22 h,2h2_

(52)

(53)
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the asymptotes of Xij are found as:

6 6
X,,(+_) = X,,(-_) -

a(l + 1¢) - a(1 + _')

2i fl - 2i
X,2 (+oo) - + X,2 (-oo) _

(1 + to) a(1 + t¢) (1 + to)

2i 13 - 2i
X2,(+_ ) - + X2,(-_) -

(l+_c) a(l+_c) (l+_c)

-6 -6
X 22 (.q-oo) -- X2 2 (-oo) _

a(l + tO) - _(1 + _')

+

- a(l + _c)

+

-0t(l + K)

(54)

d!-e!, c!. and 1
so that from (54) it is concluded that q' 1J' lJ gij described earlier in equations

(12) and (18) become,

2
dlt2 = d_t -

I+K"

I i 6
ell _ -e_, -

-- I+K

,
el2 _--- e2l -

1+_¢

i I 1 I lI t I I I Ic I = c 2 = c21 = c22 = d = d_,__: gll = gt2 = g21 : g22 : 0

Now substituting (53) and (55) into (22) and (23) the final

equations are reached,

t¢+l

2/.t (x 1,0) 1[_ t 1'!p,(&) = -- + k,,(&,t)f_(l)dt
_t--X 1 7 - "-

'!91 i(U(t - x_))]f2(t)dt
Jr

+ L ti kll(Xl,t),[_ (l)dt-% ! _2---Ci(U(t-
zr_ jr

x, ))]f_ (t)dt

K+I

2,u(x, ,0)
P2 (X,) = -- t + -- k2_(x_, t)f, (t)dt

Jr ,, t- x_ lr ,,

1 i(U(t - x t))]fz (t)dt
lr -

+ k22(& , t)f2(t)dt + -- i(U(t - x, ))]f2 (t)dt

(55)

singular integral

(56)

(57)
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where,

k,,(x,,t) - t¢ + 1 {I2[X,,, _ X,,]isin(a(t - x,))}da
4

+ {IX,, + X,,,,]cos(a(t- x,))}da

a ]cos(a(t - x, ))}da}
+ {[XI_ +X_,,-2a(l+_c )

(58)

k_2(xl,t ) -

+

+

r+l{_{[Xp,-Xp + 4i ]isin(a(t- x,))}da
4 - " l+a-

_i_{[x¿__+ x,:, ]cos_a(t- x,))/da

/3 cos(o:(t x, ))}da}
_JT{[X,_ + X_, - 2 0_(1 + t¢)]

(59)

4/ ]ik,,(x_,t)- _'+ 1 {jo{[X_,f_ -X,, + sin(a(t x,))}da
- 4 " - 1+1¢

U+ {[X2, + X._,.lcos((z(t - x_))}da
)

13 ac).lcos(a(t _ x,))}da}+_Tclx:,+ x_,.- 2( l +

(60)

k,,(x_,t) - _c + 1-- 4 {I;[X22,.- X=]isin(ot(t- x,))}da

+ £" {[X22 + X22,]CON(OC(I -- xl))}do¢

a cos(a(t x,))}da}
+ _7{[X22 + X22, + 20:(1 + to) l

(61)

The definitions for the stress intensity factors (SIF) and the strain energy release rate

(SERR) can be found in Konda and Erdogan (1994). Applying the Lobatto-Chebyshev

collocation integration technique, as in Binienda and Arnold (1995), to the system of

singular integral equations (56) and (57), the normalized mode I SIF were produced and

compared to that of Konda and Erdogan (1994) as summarized in Table I.
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Multiple Crack Formulation

To formulate the multiple crack problem the total stresses of the system needs to be

determined. The cracks are located along their local x_ axes, which are related by the

following coordinate transformation:

x i = xi+ I cos(0,+ n - 0,) - Yi+J sin(0i+l - 0i)

Yi = xi+l sin(0i+l - Oi ) + Yi+n c°s(0i+l - Oi)

xi+ , = x_ cos(0i+ _ - 0i) + y_ sin(0,+_ - 0, )

y,+, = -x, sin(0_+n - 0g) + yi cos(0,+ I - 0_)

0i+1 > 0 i

(62)

and the stresses are related through the Cauchy stress transformation tensor:

2,, ,zlt tG_ _, : 11: ?712 Gv, ,_ ,

_ _,,-jCL

O" i_+_ _ I?12 - 2mn or,,,

m = cos(0i+_ - 0_); n = sin(0_+_ - 0,)

(63)

The material constants are:

The stresses for each coordinate system are expressed as:

{i) (i) "P li) (i! _'_

+ 1 _ n_ h,, e'" )' - n__h21 e ''23' (i)
CY-',-',(xi'yi)=-_-_ a [ -'_i) (i, (,, (,> F,(a)

-= hjl hz2-h12 h21

(i) (i) /_l {i) (i) qr_

"_ en2 v, _11_ hl,_ e Iq _' li)
n; hi1 : F, (o:)]e'"_do_+ - <i, I_ _i_ _i>

h_l h22- h:_ h2n

(64)

(65)
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G,,,(x,,y 7) =---
1 "_a2[ 1122e"'' -h_ I e ''_' (')

2_ _=J hj _h22 - hi2 h21

hll e": r, _hi2 enlL (i)

_,_ li_ _i_ .) F2 (a)]ei''_da

hll h22- hie h21

(66)

r,,,(x,,yT) = ---

+

li) (i) "_ 1i) (i) _'_

i _ nj h= e"' )' -n 2 h_ e"-' _' ")
2"-1rJ at ,,,., ,.-_, F,(a)

-_ h_ h22- hj, h21

(i_ (i) _'_ (i) (i) q_'

en 2 enl v, (i)n_ h_ -hi h_2_ F.(ot)le",'_da

/hi h22- hi2 h21

(67)

(i) (i) "' {_) (i) _"

1 _ 113N22 e "y' -nj N. 1 e ''_'' (i)
a,,(x,,y;)=_2_._:[ _ (,, ,,, ,,, -. F,(a)

,, _= Ntl N22-N12 N21

(i) (i) .b (it i _'_

n_ Nil e 'q v' -t13 NI2 e"' " (i,

+ ,i) (i) li) .I F:(a)]ei""_da

Nil N22- Nt2 N21

(68)

a,.,,. (x,,y,.-) = -

+

li) I,_ (i) ('_

i n_ _, e.4 ), (i)
N_e " -N,, F,(a)1 0_2[ '_,: -57 -_,_ (i,

2tr -_ N_ N..- Np N21

(i) "' (i) "_

e ''_)' -Np e '''_' _i_
(tl 1i1 (i) (i) -

N_ N22- N:_ N2_

(69)

(i) (i! l,, li) (i) "_

i J'r°t[ n_ N,, e '''_' -n 4 N_ e ''_' _i_, =___ • ?-I ,,, ,,, _,, F,(a)
"r,,, (x,.yi) 2re _ NI _ Nz2_ NI 2 N2 _

(i) (i) "' I ) (i) _'_

n 4 N_ -n_ Np (_. . F,(ot)le",'_do_
+ _i) (i) (i) (i_ -

N_ N22- Np_ N2_

(70)
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where,

NI, - (tl,-t73)(n3-n2)
8/.1o

(il K'-Jr- 1 _i) ii) _it li)

Nj2 - (n4- n2)(nt- n4)
8Po

(i) (i) (i) (i)

li_ ia-/3 (nl-n,)(n,- n 2) (71)
N21 - (a2(1+_'2)-6, 2(w-3))[ I,, " ,_, _i, ]

8Po (fi, - n_ )(8 i - n 2)(8i - n 3)

(n_- n2 )(n,- n_ )
i0_-i_ (0_2(1+K2)-8, 2(_¢-3))[ i,_ l,_ I,, ]

8Po (3, - n2 )(3, - n, )(8_ - n_ )

(i)

N22 -

and hij are as defined in (49) for the i_hcrack. Assume that there are n cracks present, then

the stresses for the i th crack could be expressed as:

It

T (x_, v-) _ (x,,yz)+ ,___o"j_cr ., = or,,, ,,,[xj(x,,y_),yi(x,,y,)]
j=i+l

it

y T,.", (X,, ";, )= _',,(.',. , .V)+, r,.[X,( , V_), y j(X,, V,)]
.i=i+l

(72)

where o" ,r,,,, are found using (63) and they are evaluated as in (9) and (10)

respectively. One must be carefull when chossing the stress components for the positive

Yi (Yi +) and for the negative Yi (yi-)- Thus the final singular integral equation could be

expressesd for the i1h crack as:
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,(
t¢+l

2_(x i,O)

li)

'" '" f2( i),+i}"' '"
Pl (x )) = -- f-:--=--a_t, (x,, ti ) f2 (ti)dti

,r t -x, ,r q,k':

)9 '"1 i(Ui(t,-xi))]fe(t,)dt,
lr

1 "" _o li_ 1 _e6,. li_
+-- ] k,,(%,t, ) f, (t,)dt,-7 ] U i(U(t* - x, ))] f, (t,)dt

ar a_

,, 1 t,j a{J_l we ..i.2 ,_ ,. )2± ft. " _2'-' 2Z_2 -x'c°sO )
+ Zllr,q_ (x]sin20+(tj-xicosO)2) 2j=i+ 1

/' sinO((tj - x_ cosO) e + x,-' sin-" O)eli Xi
+

(x,.esin e 0 + (t, -x, cosO) 2)2

2b {_r,i - _sinO(ti-% cosO)
+

(x_ sin-' 0 +cos: O(t-xi)2) e

-t (ti - xi c°sO)d([_(x[- sin-' O+ (t i - % cosO)2)] IJ,
(x_ sin e 0 + (tj - x, cosO) 2 )2 f, (tj)dtj

+-- k]_(xi,tj) fl(tj)dt j
7[

! _ a_' (%- sin" 0 - (tj - % cosO) 2 )

clJ,_x_sin O((t, - x_ cosO) 2 + x_ sin'- O)
+

(x_ sin e 0 + (tj -x, cosO)2) 2

{j).

+ 2b,2 aisinO(t_-%cosO)

(xff sin e 0 + cos 2 O(t - x i)2)e

dl_(t_ -% cosO)(x_ sin 20+(t_ -x, cosO) 2)] ii_+ " f2(t_)dt/
( xie sin e o + (t i -- Xi COSD)2 ) 2

+ -_fk,e(xi,tj)f2(tj)dti}
(73)
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,(
_+1

(i)

li) 1 I} f, (t,) _ 1 I,, .) tit
p2(xi)) =--I_t i + jk2_(&,t_) f_(ti)dt ,

t-x, 7

_1 i(U,(t i - x.))] f](t,.)dt,.
Ir

IIr

1 '& ,i) "' 1 t,_6i o)

+_ j k22(&,ti) f2(t_)dt, --_ j Ui(u(t, - x, ))].f,_(t,)dt,

h r (i) "_ • "_ _ . _ ")

+ _{ --//1,aq_._____;__(x?sm-e-(t,-x_cosv)-)_-'---_c-;

j=,+, Ir,J,j (x[sin-O+(tj-xicosO)" Y

cl_r2_- i sin O((tj - xi cos 0)'- + x,2 sin: O)
+

(x[ sin 2 0 + (t j - x i cosO) 2 )2

2_-I i) .
v__i x_ sin O(tj -.r_ cosO)

-t

(x/sin 2 0 + cos 20(t - x, )2 )2

+ (tj - x_ cosO)d_)(x_ sin 2 0 + (t., - x, cosO) 2) i j,

(X2 sin 2 0 + (ti - Xi cosO)2) 2 ]fl(tj)dtj

1 /,#(j) i,

+ -- J k._, (xi. t i ) f. (tj) dtj
dj

i (j) 2 •
1 _a,; (x i sm-O-(ti-xicosO) 2)

+-- [--;--:-_ ...... )2_r ,,, (x,: sin" 0 + (t 2 -xi cos 0)2

C( j)_
2_ -_ sin O((tj - x_ cosO) 2 + x( sin 2 O)

+

(x} sin 2 0 + (t i - xi cosO) 2)2

(j)..
2b22 __ sin O(tj -x_ cosO)

+

(x_ sin 2 0 + cos 20(t - x,. )2 )2

+ d25/j_(ti _xicosO)(x_ sin 20 +(tj -x icosO)'_)] ij,
(x2 sin 2 0 + (t j - x i cosO)2) 2 f 2(t i)dt j

] t,_ (i) j)

+-- j k.( xs.t l) f .(t /)dt / }

(74)

(/') (/3 (/) (i)

where the constants a,,...d .... and k .....are defined in the Appendix, the kernels k .....

are defined as in (58) through (64) and O=Oi-Oi.
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The above solution is reduced to the case of two collinear cracks embedded in the

isotropic plate to demonstrate high accuracy of the results as shown in Table II.

Parametric Studies

In the following parametric studies the length of all cracks is chosen to be 2c = 2.

The infinite plate is subjected to normal stress along y global direction, Oyy=l psi. Cracks

are located along their local xi axes, which can be inclined with respect to the global x

axis. All the geometrical dimensions are normalized with respect to c. The parametric

studies are presented for the normalized mode-I and mode-II SIF, i.e., kl/k0 and k2/ko, and

normalized SERR, i.e., Gi/G0 and G2/G0, where k o = Oy,. r_ and G O - 8_°k2° .
• _(_+1)

First study takes into consideration the problem of two collinear horizontal cracks.

The same crack configuration was used to produce the results in Table II for

homogeneous materials, see insert in Figure 3 or 4. Here we extended the material

properties to the show transition from homogeneous material to FGM. The distance

between the inner tips is denoted by r. Figures 3 and 4 show mode I normalized SIF and

mode-I normalized SERR versus a normalized crack tip distance r/c. The curves are

shown using the logarithmic scale for the crack distance variable.

It can be noticed that as the distance between the cracks becomes smaller the SIF

and SERR become larger for every power of the exponential variation coefficient ),.

Note, that the homogeneous case is represented by making the coefficient y = 0. Both

driving forces increase as y increases for materials becoming more nonhomogeneous. The

increase is especially significant for the crack tip distance less than 0.01.
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The caseof collinear inclinedcracksat 30 degreesfrom the horizontal axis is

shownin Figures5 to 8. Mode-ISIF shownin Figure5 haslargermagnitudesfor both

the homogeneousand FGM materialsthan the correspondingMode-lI SIF shown in

Figure 6. Both modesshowincreaseof SIF for decreasingof thecrack tip distanceand

for increasingof the coefficient Y. Figures 7 and 8 display mode-I and II SERR.

Magnitudesof Mode-ISERRarealmostthreetimeslargerthanthecorrespondingmode-

II SERR.Both SERRmodesincreasefor decreasingof thecracktip distancer (sameas

SIF) andfor decreasingof y (oppositeto SIF). It shouldbepointedout that the material

stiffnessat eachcrack tip dominatestheresultsfor SERRto thepoint of reversingthe

trendin comparisonwith SIFwith respectto Y-

The caseswhen two cracksare locatedalong two different local radial axes

distanced = 1from theorigin is shownin the remainingfigures.Thelocationof the first

crack iskeptconstantat 30degreeswhileorientationof thesecondcrack is changedfrom

45 to 90 degrees.Both SIF andSERRareshownfor eachcracktip versustheorientation

angleof thesecondcrack.

Figures9 and 10displaymode-Iand II SIF while Figures 11and 12 represent

bothmodesof SERRat the left cracktip of the stationarycrack 1. It canbe noticedthat

when crack 2 comescloser to crack 1, the tip al is shieldedand all driving force

componentsaresignificantly reduced.Mode-II SIF hasits maximumfor the orientation

angleof the secondcrack closeto 70 degrees. By increasingy higher magnitudesfor

mode-ISIFandlowermagnitudesfor mode-IISIFareproduced.

Both modesof the SERRdependnot only on squareof the SIF but also on the

materialstiffnessat the cracktip. This influenceis especiallyshownin Figure 11where
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the homogeneouscaseproducesthe smallestSERRfor angle45 degreessimilar to the

correspondingSIF. However, homogeneousSERRcurve becomeslargest for higher

angles,which is oppositeto thecorrespondingSIF.

Theoppositecharacterof SIFandSERRis evenbettershownin Figures13to 16.

Heretheshieldingeffectdoesnotexhibit itself. Bothmodesof SIFfor thehomogeneous

material are smallest (see Figures 13 and 14 for mode-I and II SIF), while both

componentsof SERRare largest (seeFigures 15 and 16 for mode-I and II SERR),

becauseof thecracktip materialstiffnessinfluence.

Theresultsfor the left cracktip of thesecondcrackareshownin Figures17to 20.

Mode-ISIF dependson thecrackorientationandfor homogeneouscaseis smallest.The

negativevaluesof the mode-ISIF shouldbe interpretedasthe crackclosureandSERR

for suchcaseiszero.

Mode-II SIF at the tip of the secondcrack versusits orientationis shown in

Figure 18. For thehomogeneouscasethe maximumk2is at 45 degrees.In thecasesof

highercoefficient], the maximumk2is shiftedtowards60 degreescrackorientation.The

magnitudesof SIFare larger for nonhomogeneouscasesthanfor thehomogeneouscase

whentheorientationanglesof thesecondcrackarehigherthan60degree.

Mode-I of SERR monotonicallydecreasesto almostzeroat 75 degreesand at

about 50 degreesdoes not depend on 7, see Figure 19. For 45-50 degreesthe

homogeneouscaseis the highestand for 50-90 is the smallest.Mode-II SERR is the

highestfor 45-90 degreesangleorientationand has its maximumat 45 degrees,see

Figure20.Theshift of themaximumto 55degreescanonly beobservedfor 7=1.0.
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Mode-I SIF for the right crack tip b2 is very small for all the angles examined or it

is negative (crack closure) for the angle more than 65 degrees for the homogeneous case

and down to 50 degrees for FGM with y=l. Mode-II SIF is shown in Figure 22. The

maximum is moved to 60 degrees because of the influence of the crack below. The

homogeneous material case is the smallest for all the angles of the crack orientation.

Mode-I SERR at the same crack tip is shown in Figure 23. Homogeneous case

starts to be the highest at the orientation of 45 degrees and quickly goes to zero at 62

degrees. The FGM with the highest _, also goes to zero but at the smaller angle because

the crack tip remains closed. Mode-II SERR is shown in Figure 24. All the curves have

their maximum at 55 degrees. The highest SERR is for 7 = 1.0 and the smallest for _, =

0.25 at the angle of 45 degrees. The homogeneous material produces the smallest SERR

for the orientation close to 75 degrees.

All of the above parametric studies demonstrate that the effect of the material

properties, crack orientation, location of the additional crack are interdependent and

consequently produce behavior different than isotropic homogeneous materials. The

model developed in this work can be used to study fracture problems in FGM and can be

used to tailor the properties in order to reduce driving force components and effectively

increase live of these materials.

Conclusions

Application of the general solution to the mixed boundary value problem was

demonstrated to provide an elegant way of obtaining the fundamental solution for a crack

embedded in an infinite nonhomogeneous plate. The fundamental solution was used to
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address multiple crack problem. Parametric studies for the multiple cracks revealed, that

both SIF and SERR highly depend on the crack geometrical parameters such as crack

orientation, location, relative distance, etc., but they also depend on the power of the

exponent describing the rate of change of the material elastic parameters, y, and local

stiffness of the material at each crack tip.

The results demonstrated that the driving forces can be amplified by the collinear

crack orientation or they can be reduced by the shielding effect between cracks above or

below. The character of the amplification or shielding remains similar for

nonhomogeneous materials but in most cases higher than zero coefficient y increases SIF

and reduces SERR.

The well known one-to-one relation between SIF and SERR curves is not always

valid for FGM, because SERR also depends on the material elastic constants. Hence, the

SIF curves may have different character than SERR curves. The application of the

driving forces to crack propagation criterion need to be further studied to determine

which driving force (SIF or SERR) best correlates with appropriate experimental results.

However, since SERR includes the influence of SIF and material stiffness at the tip it is

recommended that total SERR is used for the driving force parameter for FGM.
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Table I Verification of the Solution.

c_ Konda and

Erdogan (1994)

kl(a)]_c

Present Study

k l(a)/"_c

Konda and

Erdogan (1994)

k2(a)/4c

Present Study

k2(a)/_c

0.25 t.036 1.036 0.065 0.062

0.50 1.101 1.101 0.129 0.122

1.0 1.258 1.260 0.263 0.243

c=(b-a)/2

Table II Two Collinear Cracks In Isotropic Plate

0.22

0.50

0.857

From literature

Ho_i and Nemat-Nasser

(1985)

Erdogan

(1962)

Inner Outer Inner Outer

1.2289 1.0811

1.05791.1333

1.45387

1.22894

1.13326

1.11741

1.08107

1.05786

Present Method

Inner Outer

1.45736

1.22894

1.13329

1.11786

1.08107

1.05787
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APPENDIX

r

4 #"_ s_ra] ./,n 1_

aZ2z(:L)Re[ _ -_ ]

4 E2ze = Sinh[a]

4 #z° _,sinU[a]

IL22= ]

4 #z'a sir_ta]_ ]

(_ - z6) _/3- =2

4 Z l_ z* = SArah[a] . / _A_I

_._[ ....... _*'_ ]

]_ am[ 4 _ze a _iz_[a]

• ]

2(-T(3:_[e]÷B:Ln[e])_/'_ (ErzeS:L"_[a]-2Q:)sbta]B:L:[e]_/"Z+l'-t ):_x2

1
_3 -K2

(:L) Re[2 Ic12 =
(2 1 Sin[e] 2 + Sin[2e] ) Si.h[a]

4"

1 +K 2

NASA/CR-- 1999-208676 30



(t) Re[C21 -- 2 1 _I* O°eh[a] ]
1 +x2

2I E2xeSiuh[a]

3 -x2

2(-IC°e[e]+Sin[e])_ (E'x°Sinh[a]-20°sh[a]Sin[e]_ -1+'-_-4)1+_
]

& =Tm[2I

(21 Sin[e] 2+ Sin[2 O] ) Sinh[a] Co_h[a]
+

= ira[2 1 E2x"O:eh[a]l+x2 ]

21 _X*Si"h[a]

3 -x2

4 E_ze a Si.h[b]./,--_

(t.1),_=Re[ _"^" l
(_+ I6) _/3- x=

41 E_X° a Sinh[b]
(t÷l) Rer
a12 -- [

F-T"_
4 Eax* a Sinh[b]., I ,---_1_

(t.1)a_= Re[ _ "^" ]
('r_-6) _3-x2

(l.1)a,_=Re[ _"^" ]

4 E2 xe a Sinh[b]

%'--_[ l
(#+z6) _3-x2

41 Z2x° a S£nh[b] _I___

gg,. ,..[ v_'_]
(_+ I _) _/3-'3"_"x22

_ 3---_2 1 + x2 ]
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]
(x_-6) _3-x2

4_Z°aSinb[b] _._--

4Coah[b] Sinle] (-ICes[el+Sln[e])

1+ K 2

21 sinh[b] 4 I_--_)

-3 +x2 ]

(i.1, [/
12=I_

2 (-1+ KaI#)%/3 -x'_sitlh[b] _ + 2 1 Cosh[b]1. .,c2 '/l

2 1 Ea=e Cceh[b] 1
J

l+x2

I--7-.
2 1 La'r" Siuh[b] .slT-_

(_+1) Re[

= i+ K2

2 (-1+ Eaze) Slnh[b]

Sln[e] (-ICos[el +Sln[e])

(_) =Im[" 2 1 Eaze_comh[b] ]

a I _x, s_ah[bl _ ]
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where,

8 : ei+l - ei

1 _/ 3-x2a = --- _ Sln[e] (_-i _)
2 x2 +1

1 _ 3-K2
b: --_÷iSin[e] (_+i 6)

2 x2+ 1

and,

; 4 Exp[_ x_]

, (=,=_=._._,(¢.a_)._[.o._,,.[.,,),,_,o(_.._x,_.,,,)

i {xz,-_-b=-xaaae+ al [_+ aa). _[-=x_ sz=[el

= 4_[a_.11 ,ml=.,allt-a. l aa + ca) ._[-=x,.ls_ntel]) c_[.. (ti-x,.loaa[e])] +

i (xllltc- xlllt ÷ 2 i ÷ E_[-a x_.x Sin[e] (_ - xi.l

(( ,(_i, (t.i,, )(_÷1) x2+l xl21tc+xl21t- 2. I a12 + c12) .Exp[-axi, iSinIe]] Cos[a (tl-xi.1(_s[e])] ÷

(( ( )_) _a.l xaa_ee+xa_t- _. _ aa_. ca} •_pt-=x_._ sln[e]] ow[= (t,-x_.xo_[s])] +

{( ( '*_" )_) _a+l :x22].t.r....x22"it.- 2. (_) ÷ ca) .Exp[--xt._Sln[e]) Cce[a (t.:L-x,l.',(:_[e])] ÷
4 Xxp(,ex.,..v,)
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where,

xl12t = s4n[e] 2 ( z_2 H22• -_ xLstn(e] - z_ 2 Hzz • -=tx* s,hie]_--_-_ )+coa[e]2(-a 2 N22 ÷

2 size[e] Q=e[e] (-, = n3 Nz2 e n3X* _[.] _ n4 _ e n4X, sin[.] )

2Sin[e] C_[e] (i

x212t. S_,_[e] _[e]

SJn[e] (_s[e] (-a 2

(_[e] 2 s*n(e] 2)

x222t. S4,,[e] Q]s[e]

Sin[e] _oe[e] (_=2

(c_[e] 2 _[e] 2)

_t l_z • -ntx_ _[e] - n3 H;2 • -n3xl _[e]

J

z_ 2 _ e mxt_t e] . n42 H2ze nt x_st=[e] ]

N22 e-n3x_S*n[e]. N21e-n4x_'_[e) ) +

-i a z_ _ e-n_ XtS_n[e] _ n4 N_ • -ntx_ s_[e)

z'q Nj.1 • "at x'J.8in(e) _ n32 N12• -n3x4.m_.n(e]

I,_j.i.e-X_Ixl,_Ln[e] _ l;l_e-n3x.l,B_[e]
] +

]

e-n3 x_S_[e] . _ e-nix, m,a[e]

x_11_" _;J'l_[e]2 ( _'12 h22enlx**ssn(e] - n22_zL e_x**sLn(e]]_.t_-_--_ ) + (3c_[e]2 ( -a2 l_2enlX*÷Z_(e] -h21e_Xi'ls_(e] )-

2 s:La[e] c_,,[e] -, = _--"_- h_.

x_21_ • S_[e] 2 ( x_2 l_z • n2X_÷__L-[e]_--_-- 1_I_ZL-nz2 hz2 • nzxi'_ e*n[e] ) + Q_[e]2 t_=2 hlz e_ xL.Z_e]hlzt_22- 1_.2_-_ enlXi.Z _[e] /-

2 sL,_[e]cos[el i ,, _--_-h=_

x2_Z_ = -S_[e] O_s[e] _ -h-aa hax ÷
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n22 h_e,_Xi.lsin[e] _n12h_ eraxl÷lsin[e] ) +x221t = -Sin[e] C_[e] h_]_ - h_ hn

sin[e] cos[e] (-a 2 hl"len2Xi*lSin(e]-h12en'-Xi*lsin[e] )

(a:w(o] 2- s_[ol 2) -, ,, h_hm - hm_

xll2tc = Cunj_ate[xll2t], x122tc = CcnJugate[x122t], x212tc-- CunJugate[x212t],

x222tc = CunJugate[x222t], xllltc = Oc(lJugate[xlllt], xl21tc-- Ccnjugate[xl21t],

x211tc --Conjugate [x211t] and x221tc = OunJugate [x221t] .
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Figure 1. Methodology of Solution for the Fundamental Problem.

(a) Mixed Boundary Value Problem for the FGM.

(b) Infinite FGM Plate without Crack.

(c) Perturbation Problem of a Crack loaded by Surface Tractions.
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Figure 2. Multiple Cracks Embedded in the Infinite FGM Plate.
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Figure 3. Mode I normalized SIF versus normalized inner crack tips distance

for two collinear horizontal cracks. (Oyy = 1.0, o×x = Cy×y=0.0).
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Figure 4. Mode I normalized SERR versus normalized inner crack tips distance

for two collinear horizontal cracks. (Oyy -" 1.0, Ox_ = Oxy =0.0).
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Figure 5. Mode I normalized SIF versus normalized inner crack tips distance

for two collinear cracks along the 0=30 deg. (Oyy = 1.0, O,,x = Oxy =0.0).
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Figure 6. Mode II normalized SIF versus normalized inner crack tips distance

for two collinear cracks along the 0=30 deg. (_yy -- 1.0, (Yxx = (Yxy "-0.0).
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Figure 7. Mode I normalized SERR versus normalized inner crack tips distance

for two collinear cracks along the 0=30 deg. (%y = 1.0, _xx = CYxy=0.0).
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Figure 8. Mode II normalized SERR versus normalized inner crack tips distance for two

collinear cracks along the 0=30 deg. (Oyy = 1.0, _xx = Oxy =0.0).
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Figure 9. Mode I normalized SIF at the tip aj versus crack (2) orientation angle 02

for two inclined cracks. ((Yyy = 1.0, cYxx = CYxy=0.0, d=1.0, 0_=30 deg.).
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Figure l O. Mode II normalized SIF at the tip aj versus crack (2) orientation angle 0z for

two inclined cracks. (C_yy= 1.0, rYxx= _xy =0.0, d= 1.0, 01=30 deg.).
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Figure 11. Mode I normalized SERR at the tip a_ versus crack (2) orientation angle 82

for two inclined cracks. ((Yyy = 1.0, (Yxx - (Yxy -'0.0, d=1.0, 01=30 deg.).
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Figure 12. Mode II normalized SERR at the tip al versus crack (2) orientation angle 02

for two inclined cracks. ((Yyy = 1.0, crxx = Oxy =0.0, d=l.0, 01=30 deg.).
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Figure 13. Mode I normalized SIF at the tip b_ versus crack (2) orientation angle (12 for

two inclined cracks. (Oyy -- 1.0, Oxx -" Oxy =0.0, d=l.0, 01=30 deg.).
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Figure 14. Mode II normalized SIF at the tip bl versus crack (2) orientation angle 02

for two inclined cracks. (_yy = 1.0, I_xx = _xy =0.0, d=l.O, 0_=30 deg.).
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Figure 15. Mode I normalized SERR at the tip bj versus crack (2) orientation angle 02

for two inclined cracks. ((Yyy "- 1.0, (Yxx = Oxy -'0.0, d=l.0, 01=30 deg.).
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Figure 16. Mode II normalized SERR at the tip b_ versus crack (2) orientation angle 02

for two inclined cracks. ((_yy = 1.0, t_xx = (_xy -0.0, d=l.O, 0_=30 deg.).
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Figure 17. Mode I normalized SIF at the tip a2 versus crack (2) orientation angle 02

for two inclined cracks. ((_yy -- 1.0, oxx = (_xy =0.0, d=l.O, 01=30 deg.).
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Figure 18. Mode II normalized SIF at the tip a2 versus crack (2) orientation angle 02

for two inclined cracks. (Oyy = 1.0, oxx = Oxy =0.0, d=l.O, 0_=30 deg.).
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Figure 19. Mode I normalized SERR at the tip a2 versus crack (2) orientation angle 02 for

two inclined cracks. (Oyy = 1.0, Oxx = Oxy =0.0, d=l.O, 01=30 deg.).
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Figure 20. Mode II normalized SERR at the tip a2 versus crack (2) orientation angle 02

for two inclined cracks. (Oyy ---- 1.0, (Yxx = (Yxy --0.0, d=l.0, 0_=30 deg.).
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Figure 21. Mode I normalized SIF at the tip b2 versus crack (2) orientation angle 02

for two inclined cracks. (Oyy - 1.0, Oxx = Oxy =0.0, d=l.O, 0j=30 deg.).
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Figure 22. Mode II normalized SIF at the tip b2 versus crack (2) orientation angle 02

for two inclined cracks. (Oyy = 1.0, Oxx = Oxy =0.0, d=l.0, 0_=30 deg.).
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Figure 23. Mode I normalized SERR at the tip b2 versus crack (2) orientation angle 02

for two inclined cracks. (Oyy = 1.0, O×x = Oxy =0.0, d=l.O, 01=30 deg.).
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Figure 24. Mode II normalized SERR at the tip b2 versus crack (2) orientation angle 02

for two inclined cracks. (Oyy = 1.0, Ox× = Oxy =0.0, d=l.0, 01=30 deg.).
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